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Steep solitary waves in water of finite depth with 
constant vorticity 
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Solitary waves with constant vorticity in water of finite depth are calculated 
numerically by a boundary integral equation method. Previous calculations are 
confirmed and extended. It is shown that there are branches of solutions which 
bifurcate from a uniform shear current. Some of these branches are characterized by 
a limiting configuration with a 120" angle at the crest of the wave. Other branches 
extend for arbitrary large values of the amplitude of the wave. The corresponding 
solutions ultimately approach closed regions of constant vorticity in contact with the 
bottom of the channel. A numerical scheme is presented to calculate directly these 
closed regions of constant vorticity. In addition, it is shown that there are branches of 
solutions which do not bifurcate from a uniform shear flow. 

1. Introduction 
Water waves with constant vorticity have been considered by Benjamin (1962), 

Simmen & Saffman (1985), Shira (1986), Pullin & Grimshaw (1988), Teles da Silva & 
Peregrine (1988) and others. Benjamin (1962) derived asymptotic solutions for solitary 
waves of small amplitude. Shira (1986) considered solitary waves in water of infinite 
depth. Simmen & Saffman (1985) computed periodic waves of finite amplitude in water 
of infinite depth by a boundary integral equation method. Teles da Silva & Peregrine 
(1988) used a similar method to compute periodic waves of finite amplitude in water 
of finite depth. By considering waves of very large wavelength, they obtained 
approximate solutions for solitary waves. Solitary waves in water of finite depth were 
also calculated by Pullin & Grimshaw (1988). 

In this paper we study further solitary waves with constant vorticity (see figure 1). 
We solve the problem by a boundary integral equation technique. Our procedure is 
similar to the one used by Simmen & Saffman (1985), Pullin & Grimshaw (1988) and 
Teles da Silva & Peregrine (1988). The formulation and the details of the numerical 
scheme follow closely previous work on solitary waves in the absence of vorticity 
(Hunter & Vanden-Broeck 1983 ; Vanden-Broeck 1991 ; Vanden-Broeck & Dias 1992; 
Sha & Vanden-Broeck 1993). 

As we shall see, the problem can be characterized by the following parameters: 

w = QH/c ,  
G = g H / c 2 ,  
a = A / H .  

Here g is the acceleration due to gravity counted positive when acting vertically 
downwards, Q the constant value of the vorticity, H the depth of the fluid at infinity, 
c the value of the velocity on the free surface at infinity and A the elevation of the crest 
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FIGURE 1. Sketch of the flow and of the coordinates. The free surface is a computed solution for 
w = -0.474, A = 3.8 and G = 0. 

of the wave on top of the level of the free surface at infinity. The parameter w is a 
dimensionless vorticity, G is the dimensionless gravity and a is an amplitude parameter. 

The numerical results show that for each value of w ,  there is a one-parameter family 
of solutions which bifurcates from the uniform shear flow at the critical value 

G =  l+w. (1.4) 
As one progresses along these branches, a increases. For w > w, z -0.33, the wave 
ultimately reaches a limiting configuration with an 120" angle at its crest. These results 
agree with those previously obtained by Benjamin (1962) for waves of small amplitude 
and by Teles da Silva & Peregrine (1988) and Pullin & Grimshaw (1988) for waves of 
finite amplitude. In particular Benjamin (1962) derived (1.4) by asymptotic methods. 
For w < w,, the waves exist for arbitrary large values of a. As a+ co, the wave 
approaches a closed region of constant vorticity in contact with the bottom of the 
channel along a segment. A numerical procedure is presented to calculate directly these 
regions of constant vorticity. 

We show that for each value of w, < w < 0, there is an additional family of solutions. 
Its existence is suggested by the fact that solitary waves with constant vorticity exist in 
the absence of gravity (i.e. when G = 0). As we shall see, they form a one-parameter 
family of solutions which bifurcates from the uniform shear flow at the critical value 
w = - 1 (see (1.4)). As one progresses along the branch of solutions, w increases to zero 
and a tends to infinity. Therefore for each value of w between 0 and - 1, there is in 
addition to the branches of solutions which bifurcate from the uniform shear flow an 
additional solution corresponding to G = 0. We show numerically that there is a one- 
parameter family of solutions which contains the solution with G = 0. For - 1 < w < 
oc, this family coincides with the family of solutions described in the previous 
paragraph. However for w, < w < 0, this family is a new family of solutions which does 
not bifurcate from a uniform shear flow. As one progresses along this branch of 
solutions, the waves evolve between two limiting configurations. The first limiting 
configuration is a wave whose profile has one point of contact with itself. The second 
limiting configuration is again a closed region of constant vorticity in contact with the 
bottom of the channel. 
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The problem is formulated in 92. The numerical procedure is described in 93. The 
numerical results are discussed in 94 and the regions of constant vorticity are computed 
in 95. 

2. Mathematical formulation 
We consider a two-dimensional solitary wave in an inviscid incompressible fluid. The 

fluid is bounded below by a horizontal bottom. The flow is assumed to be rotational 
and characterized by a constant vorticity Q. We take a frame of reference with the x- 
axis along the horizontal bottom and in which the flow is steady. We assume that the 
flow is symmetric with respect to the y-axis (see figure 1). 

We denote by H the depth at infinity and by c the velocity on the free surface at 
infinity. The variables are made dimensionless by choosing H as the unit length and c 
as the unit velocity. The flow is described in terms of a stream function $(x,y) 
satisfying 

in the flow domain. Here w is defined in (1.1). 

solution of (2.1). Thus if we write 

then V2 Y ( x ,  y) = 0. Now the quantity w(z) = u - iu = Yg + i Yz is an analytic function 
of x + iy, where the fluid velocity vector is (u - w(y - 1) + l), u). We satisfy the kinematic 
condition u = 0 on the bottom by reflecting the flow in the bottom. The function w(z) 
vanishes at infinity. Hence by Cauchy's theorem, when z is on the free surface 

VZ$ = - w  (2.1) 

We reduce the problem to one for Laplace's equation by subtraction of a particular 

7 )  = Y-;wy"(l + w ) y  (2.2) 

with a Cauchy principal-value interpretation. Here C denotes the free surface and its 
image in the bottom. 

Suppose that the free surface is parametrized by x = X(t),  y = Y(t) where t is the 
arclength with t = 0 at the crest of the wave. Then 

(2.4) 
X(0)  = 0, Y(0) = 1 +a, (2.5) 

X'( t ) Z  + Y'(t>Z = 1 ,  

where a is the amplitude parameter defined in (1.3). We now consider u and u to be 
functions of t .  Taking the real part of (2.3) and using the symmetry of the wave with 
respect to the y-axis, we obtain, after some algebra, 

(X(s)+X(t))(u(s)X'(s)-u(s)  Y'(s))+(Y(s)+ Y(t))(u(s)X'(s)+v(s) Y'(s)) 
(m) + x(t>)z + ( Y ( 4  + Y(t)Y 

ds, 

(2.6) 
+ s,, 

an equation that holds for all 0 < t < co. 
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On the free surface, the kinematic condition and Bernoulli equation yield 

(u + w + 1 - w Y )  Y’(s) = vX’(s), 
[ u + ~ - w ( Y - ~ ) ] ~ + u ~ + ~ G Y =  1+2G. 

Here G is the gravity parameter defined in (1.2). Equation (2.8) expresses the fact that 
the pressure is constant on the free surface. 

For given values of w and CI we seek four functions u, v, X’ and Y’ satisfying (2.4), 
(2.6)-(2.8). The parameter G is found as part of the solution. 

3. Numerical procedure 
We seek a numerical solution of the nonlinear integro-differential system (2.4), 

(2.6)-(2.8). First we define N distinct mesh points on the free surface by specifying 
values of the arclength parameter t = S,, where 

s, = E(I-1), I =  1 ,...) N .  (3.1) 

Here E is the interval of discretization. We shall also make use of the intermediate mesh 
points SIP; = i (SI+l  + S,), I = 1,2,. . . , N -  1. 

We now define the 4N corresponding fundamental unknown quantities 

and 

U I  = u(S,), I =  1,2 )...) N ,  

x; = X’(S,), I =  1,2, .  . . , N ,  

Y ;  = Y’(S,), z = 1,2,. . . , N .  

U ,  = ~(s,), I =  1,2, .. ., N,  

We estimate the values of the x- and y-coordinates X! = X(S,), Yj = Y(S,) in terms 
of the fundamental unknowns by the trapezoidal rule, 1.e. XI = 0, & = 1 +a and 

where X’(S,-;) and Y‘(S,-;) are evaluated from X;  and Y; by a four-point interpolation 
formula. We satisfy (2.7) and (2.8) at the mesh points S,, I = 1,2,. . . , N -  1 and (2.4) 
at the mesh points S,, I = 1,2,  . . . , N .  This yields 3N-2 nonlinear equations. Next we 
evaluate X(S,-;), Y(S,-$ by four-point interpolation. 

We then satisfy (2.6) at the point t = SIP;, I =  1,2, ..., N -  1 by applying the 
trapezoidal rule to (2.7), with a sum over the points s = S,, J = 1,2,. . . , N .  The 
symmetry of the discretization and of the trapezoidal rule with respect to the 
singularity of the integrand at s = f enables us to evaluate this Cauchy principal value 
integral by ignoring the singularity, with an accuracy no less than a non-singular 
integral. This yields N -  1 extra nonlinear equations. 

Four more equations are obtained by imposing the symmetry condition 

Y ;  = 1 

YN = 0, 

U N  = 0, 

v, = 0. 

and the far-field conditions 
(3.9) 

(3.10) 

(3.11) 
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We now have 4N+ 1 equations for the 4 N S  1 unknowns (3.2)-(3.5) and G. This system 
is solved by Newton's method for given values of a and w .  To obtain the results 
presented in the next section, we also use a variation of the scheme in which we fix G 
and w and find a as part of the solution. 

4. Discussion of results 
We used the numerical scheme of $ 3 to compute solutions for various values of w and 

a. Most calculations were performed with N = 150 and E = 0.5. For waves close to the 
limiting configuration with a 120" angle, we used E = 0.1 and N = 150 to resolve the 
sharp crests. In all cases we checked that the numerical results are independent of Eand 
N within graphical accuracy. 

Numerical values of a versus G are shown in figure 2 for various values of w .  For 
all values of w and G, the uniform shear flow, a = 0, u = 0, v = 0, X'  = 1 and Y' = 
0, is a trivial solution. This branch of trivial solutions corresponds to the G-axis in 
figure 2. The solitary waves are branches of solutions which bifurcate from this trivial 
solution at the critical values (1.4). Benjamin (1962) derived an asymptotic solution for 
small values of a. In particular he obtained the following relation among G, a and w 
(see his equation (46)) : 

(4.1) 

Our numerical values agree with (4.1) as a approaches zero. 
As we progress along the branches of solutions, we find that there is a critical value 

w, z -0.33 of w such that different limiting configurations occur for w < w, and for 
w > w,. For w > w,, the limiting configuration is characterized by a stagnation point 
at the crest with a 120" angle. Using (2.Q we find that these limiting configurations 
satisfy 

Relation (4.2) corresponds to the broken line in figure 2. These branches of solutions 
have been studied before by Pullin & Grimshaw (1988) and Teles da Silva & Peregrine 
(1988). In the particular case w = 0, the solutions agree with previous numerical 
calculations for solitary waves in the absence of vorticity (see Hunter & Vanden- 
Broeck 1983 and the references mentioned in that paper). Typical profiles are shown 
in figures 3(a) and 3(b). 

For w < w,, the branches of solutions in figure 2 extend for arbitrary large values of 
a without intersecting the broken curve. As a+ co, the wave approaches a closed 
region of constant vorticity in contact with the bottom of the channel. We shall 
consider further these limiting configurations at the end of this section and in $ 5 .  A 
typical profile for w < w, is shown in figure 3(c). 

Figure 2 shows that there are solitary waves with constant vorticity in the absence 
of gravity (i.e. G = 0). These solutions form a one-parameter family of solutions. 
Numerical values of a versus w for G = 0 are shown in figure 4. There is again a trivial 
solution corresponding to a uniform shear flow. This trivial solution corresponds to the 
w-axis in figure 4. The solitary waves bifurcate from this trivial solution at w = - 1. A 
typical free surface profile is shown in figure 1. As a+ 03, w + O  and the wave 
approaches a circular region made up of fluid in rigid-body rotation and in contact 
with the bottom of the channel at one point. Such a configuration was suggested by 
Teles da Silva & Peregrine (1988) as a possible limiting configuration for solitary waves 
without gravity. 

The branches of solutions for - 1 < w < w, in figure 2 intersect the a-axis. The 

G = 1 +w-a(l +w+$w2) .  

a = 1/(2G). ( 4 4  
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FIGURE 2. Values of a versus G for various values of w .  The curves from right to left correspond 
to w = 0.11, -0.11, -0.32, -0.35 and -0.8. The broken curve corresponds to (4.2). 
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FIGURE 3. Computed free surface profile for (a) w = -0.11, A = 0.2 and G = 0.742; (b)  w = -0.11, 
A = 1.0 and G = 0.49 (this solution is closed to the limiting configuration with a 120" angle at the 
crest); (c)  w = -0.8, A = 2.5 and G = -0.19. 
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FIGURE 4. Values of a versus o for solitary waves without gravity. 
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FIGURE 5. Values of a versus G with w = -0.1 1 for the new family of waves. 
The cross corresponds to the solution (4.3). 

corresponding solutions are the solutions without gravity of figure 4. For o, < o < 0, 
the branches of solutions of figure 2 do not intersect the a-axis and the solutions 
without gravity are members of a new branch of solutions. These branches were 
computed by continuation: we used the solution without gravity as the initial guess to 
compute a solution for a small value of G .  This solution was then used as the initial 
guess to compute a solution for a larger value of G and so on. Values of a versus G for 
the new branch corresponding to o = -0.11 are shown in figure 5 .  Typical free surface 
profiles are shown in figures 6(a-4 .  The new branches do not bifurcate from the 
uniform shear flow and evolve between two different limiting configurations. 

The first limiting configuration is a wave whose profile has a point of contact with 
itself (see figure 6a). It is a wave without gravity (i.e. G = 0) and the closed region is 
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FIGURE 6. Computed free surface profile for (a) o = -0.1 1, A = 38 and G = 0.0015; (b) o = -0.1 1, 
A = 35.5 and G = 0.0064; (c) w = -0.11, A = 41.5 and G = -0.02; ( d )  w = -0.11, A = 50.5 and 
G = -0.034. 

again a circular domain made up of fluid in rigid-body rotation. The radius of the 
circular domain is $A. Since the velocity on the free surface is 1 when G = 0, we have 

A = -4/w. (4.3) 

For w = -0.1 1, (4.3) gives A = 36.364. This value corresponds to the cross in figure 5.  
It is consistent with our numerical calculations. 

The second limiting configuration is the same as for the branches of solutions with 
w < w, in figure 2. It is a closed region of constant vorticity in contact with the bottom 
of the channel along a segment. The approach to this limiting configuration is apparent 
in figures 6(c) and 6(d ) .  

As 01 increases, the curve in figure 5 moves upwards. We expect that this curve 
coalesces into the point u = 00, G = 0 as w + 0 and that the new solutions do not exist 
for w > 0. This is suggested by the fact that the solution corresponding to G = 0, u = 
co and w = 0 has the properties of both the first and the second limiting configuration 
(i.e. the profile of the wave has a point of contact with itself and is in contact with the 
bottom). As w approaches w, from above, we expect the new family of solutions to 
merge with the branches of solutions which bifurcate from a uniform shear flow. 

5. Limiting configuration 
The results of the last section show that there are solitary waves of arbitrary large 

amplitude. Figures 6 (c) and 6 ( d )  suggest that these waves approach closed regions of 
constant vorticity touching the bottom along a segment as 01 + co. These closed regions 
are difficult to calculate accurately by using the scheme of $3, because more and more 
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FIGURE 7.  Computed solution for a closed region of constant vorticity in contact with a wall 
with (a) p = -0.045 and 5 = 3.04; (b)  p = -0.6 and 5 = 3.33; (c) ,u = -0.21 and 5 = 4.34. 

mesh points are needed on the free surface as OL increases. Therefore we shall calculate 
directly these limiting configurations (see figure 7a) .  We first rescale the variables by 
choosing the velocity Q at the separation points (i.e. the extremities of the segment of 
contact) as the unit velocity and the unit length L such that the total length of the free 
surface is equal to 4. We choose Cartesian coordinates with the origin in the middle of 
the segment of contact. Then the problem is characterized by the dimensionless gravity 
and the dimensionless vorticity 

5 = SZL/Q. 

Following the formulation of $2 and Vanden-Broeck & Tuck (1994), we introduce 
the stream function + and write + = Y-;cyZ; (5.3) 
then V2Y(x,y)  = 0. As in $2, w(z) = u-iv = Yv+iYz is an analytic function of z = 
x+iy, where the fluid velocity is now (u-<y,v). We parametrize the free surface by 
x = X(t) ,  y = Y( t )  where t is the arclength with t = 0 at the left separation point. Then 
X’(t)  and Y’(t) satisfy (2.4) and X(2) = 0. Proceeding as in $2, we find that the integro- 
differential equation (2.6) still holds with the upper limit 00 replaced by 2. 

On the free surface, the kinematic condition and Bernoulli equation yield 

(u-{Y)  Y’(s) = vX’(s), 
(u-{Y)2+v2+pY = 1. 

This completes the formulation of the problem. For a given value of p we seek four 
functions u, v, X’ and Y’ satisfying (2.4), (2.6), (5.4) and (5.5). The value of 6 is found 
as part of the solution. 
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We solved the problem numerically by using a numerical procedure similar to the 
one described in $3 .  Most of the numerical results were obtained with 60 equally spaced 
mesh points between s = 0 and s = 2. 

Typical free surface profiles are shown in figure 7(a-c). For p = 0, the solution is a 
circular region of fluid in rigid-body rotation with one point of contact with the 
bottom. The corresponding value of 5 is n. A graph of 5 versus -,u is shown in figure 
8. We found that there is a solution for each value of p < 0. As ,u becomes more 
negative, 5 increases and the length of the segment of contact increases. 

Vanden-Broeck & Tuck (1994) considered closed regions of constant vorticity in 
contact with curved boundaries. The results of this section generalize some of their 
findings by including the effect of gravity. 

This work was supported by the National Science Foundation. 
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